AD=-A052 950 TEXAS TECH UNIV LUBBOCK DEPT OF ELECTRICAL ENGINEERING F/6 9/3
SAMPLING THEOREMS FOR LINEAR SHIFT=VARIANT SYSTEMS, (U)
AUG 77 R J MARKS: J F WALKUP: M O HAGLER AFOSR-75-2855
UNCLASSIFIED AFOSR-TR=-T78-0628

END

DATE
FILMED




|||||...._ -
T

I..

Rt 15 B
- < g ;
RS ||urg'imr"*-§ .

———

—

NATIONAL BUREAU OF STANDARDS
L MIGROCOPY RESOLUTION YE“'MT_” .




-—r_',_

-

e es————

e 855
o //)FOSR

e s ———

_SAMPLING_THEOREMS FOR_LINEAR
... SHIFT-VARIANT, SYSTEMS}

/ Robert J./Marks, 11, John F./Walkup aw@ Marion 0./ Hagler \
m_,,~$@uao~!ech~8ntve131t
’//rm‘w_ﬂ__m__ngat. of Electrical Engineering
/ 7

@Lﬁ a j Lub't?qc?k, 9409

, /“(

Abstract
Sampling theorem concepts are applied to certain classes of linear

shift variant systems. Various sampling theorem characterizations
arise from different bandlimiting assumptions on the system input
and/or impulse response. These characterizations are also expressed
in discrete form and in all cases considered, reduce to an identical
computational form which can be evaluated with a generalized Z trans-
form treatment. The Fourier duals of the sampling theorems, wherein
the system is characterized by its frequency rather than impulse re-

sponse, are also presented.

1. INTRODUCTION

Past application of sampling theorem con-
° cepts to linear shift variant systems has
been to evaluate the system impulse re-
sponse rather than to characterize the in-
put-output relationship (1), although ade-
quate sampling rates have been discussed

‘ briefly (2).
hand, we present numerous conditions under
which the superposition integral character-
ization of the input-output relation for
linear shift variant systems can be expres-
sed in sampling theorem type expansions.
Certain ramifications of these treatments,
such as digital characterization of the
system process without loss of information
and generalized Z transform treatment of
discrete superposition relations, are also
discussed.

In this paper, on the other

In section 2, certain preliminary notational
and computational conventions are given
which are necessary in the development of
the sampling theorems. Sections 3 through

5 present three different sampling theorems
corresponding to various bandlimiting assum-
ptions on the system input and/or impulse
response. A direct consequence of these
sampling theorems are infinite matrix char-
acterizations of the system process which,
except for sampling rates, are identical

for all three sampling theorems. The use

of the Z transform in treating these dis-
crete characterizations is briefly discussed
in section 7. 1In section 8 the Fourier duals
of the sampling theorems are presented where-
in sampling is performed in the frequency
domain. Section 9 contains some concluding
remarks.
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The work of this paper was motivated by in~-
vestigation of space-variant systems en-
countered in coherent optical processing
(3). Substantial new material, however, is
presented here. We note that causality is
not a constraint in such spatial systems.
For this reason, the sampling theorems here
are presented for the more general case
where causality is not .a constraint. Al-
though a causal signal (zero for negative
time) can never be rigorously bandlimited
(4), familiar time-bandwidth product approx-
imations can be applied if approxiate (5).
The same is true for the system impulse re-
sponse with respect to its first variable.
There are many causal signals and systems,
however, which can be considered "essential-
ly" bandlimited. Even the concept of a
bandlimited signal, at best, can only be
considered as an approximation to real world
phenomena (5).

For clarity of presentation, attention will
be restricted to one dimension. Generaliza-

tion to multidimensional systems is straight-measure of the manner in which the impulse

forward.

2. PRELIMINARIES

The response, y(t), of a linear system to
an input u(t), can be expressed by the sup-
erposition integral:

y(t) = s lu(t)]
= [ h(t-t;T)u(r)ar

-0

(1)

where S(*) is the system operator and the
system impulse response is formally defined
as

h(t-131) = S[6(t-1)]) (2)

where §(t) denotes the Dirac delta. (For

a causal system, h(t-1;71) is zero for t<rt.)
This particular choice of impulse response
notation has certain computational advantages
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(6). For example, we can directly express
the output spectrum by

Y(£f) = F ly(t))
= FTFt[h(t:1)u(t)]

{3)
v=f
where the Fourier operators are defined by

Fels(t:n)) 4 L stt:inexp(-j2ner)at (4)

Ftls(t;T)lA ] s(t; D exp(-j2mvr)ar {5)

Note that for the shift invariant case that
hi{t;t) » h(t). Equation 3 then takes on the
familiar product form Y(f) = Ft[h(t)]Ft[u(t)l-

A transform of the impulse response which
will be of interest is the variation spec-

trum defined as

Ho(t;v) = F [h(t;7)] (6)

The support of the variation spectrum is a

response changes shape with respect to 1.

We consider here the low-pass case for which
HT(t;v) is identically zero outside the in-
terval |v| < W,. Such systems will be re- !
ferred to as variation limited. The quan-
tity 2"v is appropriately termed the varia-
tion bandwidth.

Note that a shift invariant system has a
variation bandwidth of zero and is thus truly |
invariant.

3. A SAMPLING THEOREM FOR VARIATION
LIMITED SYSTEMS

4

We now will develop a sampling thecrem appli- sction O |
cable to variation limited systems with band- aj |
limited inputs. For the bandlimited input, i
we again consider the low-pass case where
u(t) has bandwidth ZN“. Consider, then,

the term h(t;Tt)u(r) which is the argument of

i

=




the Fourier operator in Eq. 3. Multiplica-
tion in the 1 domain corresponds to convolu-
tion in the v domain. As such, if u(1) has
bandwidth Zwu and h(t;1) has a variation
bandwidth of 2wv, then their product will
have a bandwidth 2ws equal to the sum of
the component bandwidths:
2ws =20, + Zwu (7)
The product h(t;T)u(t) can thus be expanded
in a uniformaly converging (7) Whittaker-
Shannon sampling theorem (8) in Tt:

h(t;t)ul(r) = ; h(t;Tn)u(Tn)'

n
* sinc 2W_(t1-1)) (8)
where 1 = n/2W_ and sinc x 4 sinmx/mx.
Substituting into Eq. 3 and simplifying
gives

Y(E) = g ] H(£iT)ulr))
s n

£ (9)
X exp(-j2nf1n)G(§ﬁ—)
s

where our transfer function is defined by

Ht(f=1)A Ft[h(t:T)l (10)
and G(f) = Ft[sinc t] is the gate function.
Inverse Fourier transforming Eg. 9 gives

y () = Z h(t-t ;7 )u(t )*sinc 2W_ t

(11)
where "*" denotes the convolution operation.
We interpret Eqg. 11 as follows: For band-
limited inputs, the output to a variation
limited system can be computed by 1) samp-
ling the input, 2) multiplying each input
sample by its corresponding sample impulse
response, 3) summing the results, 4) pass-
ing the sum through a suitable low-pass
filter.
interpret this result as the representation
of a variation limited system by a bank of

As is shown in Figure 1, we can
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of shift invariant systems each of which
corresponds to a sample impulse response.
The switching mechanism required to feed
each filter its corresponding sample value _
is representative of the shift variance of |
the overall system. Note that Eg. 11 is ;
not optimal in the sense of utilizing mini-
mum sampling rates. That is, u(t) only re-~
quires a sampling rate of 2Wu and h(t;1) a
Both are here
The authors

sampling rate of 2wv in T.
being sampled at a rate 2"3’
have shown however, that the sampling ex- 5
pansion utilizing the minimum allowable 7
sampling rates is computationally less
attractive (3).

4. AN ALTERNATE SAMPLING THEOREM '
In the previous section, h(t;t) was assumed
to be bandlimited in t. Note that this
restriction does not necessarily assure that
h(t-1;1) is also bandlimited in t. As such,
we can derive an alternate sampling theorem
for the case where Ft[h(t—T;T)] is zero out- !
side of the interval |v| < W,. If our input
has bandwidth 2wu, then the product h(t-1;71)
u(t) has bandwidth zwd = ZW“ + 2Wh
can be expressed in the sampling theorem ex-

in 1 and

pansion:

h(t-1;1) = gh(t-Tn;Tn)u(xn)sinczwd(r-rn)
(12) E

where, here, Ty ™ n/2wd. Substituting inta
the superposition integral [Eq. 1] gives

y(t) = E h(t-tn;1n)u(1n)£- sinc2W, (T-7 )dt

o |
Wy

E hit-t ;7 )ult) (13)

Our expansion here is similar to that in Eq.

11 except for the sampling rate and the fact
that no low-pass filtering is required.

Note also, due to our bandlimiting constraints,
the output in Eq. 13 is bandlimited with band-
width de.




5. A THIRD SAMPLING THEOREM

The sampling theorems thus far discussed
require sampling in the 1 or input domain.
An alternate sampling theorem which utilizes
output sampling occurs when h(t;t) is band-
limited in t with (lowpass) bandwidth of,
say, Zwt. (Note that this condition is
equivalent to h(t-t1;1) being bandlimited in
t.) Such a condition holds when the system
response to an impulse input is bandlimit-
ed irrespective of the location of the in-
put delta function. Under this bandlimited
assumption, we can immediately express the
impulse response in the sampling theorem
expansion:

hit;T) = Z h(t ;1)sinc2W (t-t ) (14)

where T - n/ZWt. Substituting into Eq. 3
followed by simplification, leaves

1
Y(f) = E 1); F,T[h(tnﬂ)u(ﬂ] B

exp (327t )Glzp-) (15)
t

Inverse transforming yields:

y(t) =J hit ;t-t )u(t-t )*sinc2W t
n
(16)

As before we have reduced the system char-
acterization to a summation of convolutions.
In this case, however, we do not have to
place any bandlimiting constraints on our
input.

We can interpret Eg. 16 as shown in Figure
2. Our input is fed into a tapped delay
line which serves as the shift variance of
the overall system. The outputs at various
points along the delay line are then multi-~
plied by the appropriate sample responses.
All these products are then -summed and pas-
sed through an appropriate low pass filter

to give the corresponding system output.
6. DISCRETE CHARACTERIZATION

Inspection of the three sampling theorems
thus far presented reveals that the corres-
ponding system output is bandlimited and
thus can also be expressed in a sampling
theorem expansion. We now investigate
direct computation of the required output
sample values in terms of the sampled input
and impulse response. The resulting com-
putational forms, in the three cases consid-

ered, are identical.

(1) Consider first, the variation limited
system with bandlimited input. From Eq. 11,
we define the low-passed system impulse re-
sponse as

h(t- n;1n) A 2Wsh(t-1n;rn)*sinc2wst (17)

Equation 11 can now be written

y(t) = 7%— { ;(t-TniTn)u(In) (18)
S n

It follows immediately that

yit) = 7%; E h(ty-t st dult,) (19)
From Eq. 9, y(t) has a bandwidth of zws.
Thus, we require that e m/zwa. Note
that Eq. 19 can be straightforwardly expres-

sed in an infinite matrix form.

Suppose we now make the additional constraint
that h(t;1) is bandlimited in t with band-
width 2wt. If w' > wt' then the low-passed
impulse response in Eq. 17 is the same as
our actual impulse response:

ﬁ(t -Tngtn) = h(t-rnstn) 3 '. > W (20)

t

Then, Eq. 19 becomes
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and 25) feveals computationally identical
1 ylt) = 5%: g hit -t st )ult )i WoW, forms. Our assumptions is all cases are (1)
¥ (21) u(t) is bandlimited, (2) either h(t;T) or
! where t = 1 = n/zws, h(t-t;1) is bandlimited in 1 and, for the
: (2) Consider next the sampling theorem in first [Eq. 21) and third [Eq. 25]) cases,
| section IV where h(t-1;7) is bandlimited in that (3) h(t;7) [and thus h(t-7;7)] is band- S
] 1. Since the output has bandwidth 2wd' it limited in t. Ve can combine the three dis-
follows immediately from Eq. 13 that the crete matrix type relationships into a
desired output sample values are given by single expression:
ylt,) = }—,1,(—1 r{‘ At -t it du(r)  (22) ylt) = 2—91,—5 h(t -t 5t )ulT) (26)
where, now tn Leu n/zwd. where
(3) Lastly, consider the sampling theorem
1 expansion in Eq. 1€ where the output has e mi"["d' max(wt. ws)] (27
; bandwidth zwt. The corresponding mth out-
f put sample here is given by: and Cp= o= n/2W. We again stress, that
! in all cases considered, sampling of both
! ylt) = E (h(t :t)u(t)*sinc 2th]|ttt S the input and impulse response is performed
! m n at a rate above the reguired minimum allow-
(23) able sampling rate. :
where, now, t = m/2W,. i
A more computationally attractive form of 7. 2 TRANSFORM TREATMENT
Eq. 23 occurs when, in addition to being
bandlimited in t, the system is variation For shift invariant systems, Eg. 26 takes
limited and the input is bandlimited such on the form of a discrete convolution which i 1
that 2w < 2W .. 1In this case Eq. 15 be- is traditionally treated with the Z trans- '
comes form (8). We will now show that due to our
choice of impulse response notation, such
Y(f) = 5%: z Felh(t st)u(t)] treatment can be generalized to the shift
: variant case.
x exp(-j2wftn)G(}—Vf’:)G(§-‘§—s) :
5 ©(24) We define two Z transforms of a two variable
= W, E Felh(t st)ult)] discrete sequence s(m,n) by
exp(-j2nft ); W, < W, z [s(m,n)] = Jz™" s(m,n) (28)
n
Inverse transforming and evaluating at t= and
tm gives
5 Z,(sm,n)] =} z™ s(m,n) (29)
ylt) = ™, Z h(t -t st ult )s Wo< Wy m
: (25) Note the similarity of the spirit of these
where t = 1 - n/2wt. ; definitions to the Fourier transform oper-

Inspection of the results of the three dis- ations in Egs. 4 and 5.

crete characterizations above (Egs. 21, 22
769




Denote the Z transform of Y(I%) by Y(z).
From Eq. 26, it follows that

Y(z) = 2_[y(t)]

-,
- 2 [E 2 h(t -1 T ) lu(T))
=52 § 2 [(h(t ;1. ))z  u(r) (30)
2w oom m’' 'n n
1

This is the generalized Z transform treat-
ment of a discrete shift variant process.
Note, as was in the case with Eq. 3 the

.result reduces to the more familiar product

form for the shift invariant case.
8. FOURIER DUAL SAMPLING THEOREMS

The sampling theorems thus far presented
can also be applied in a Fourier dual sense
to the frequency domain. The corresponding
constraints here, take on a physically dif-
ferent meaning and thus widen the class of
systems which can be characterized in samp-
ling theorem type expansions.

To change the computational form of the
superposition integral, we apply Parseval's
theorem to Eq. 1:

y(t) = [“k(t-cviv)U(v)dv (31)
where U(v) = F _[u(1)]) and

kit-cvi;v) = [ h{t-1;1)exp(j2nrvr)dr (32)

The kernel, k(+,*) is recognized as the
system fregquency response:

k(t-cv;v) = S[exp(j2nv1)] (33)
The constaant c is included simply to main-

tain dimensional consistancy between the
time variable t and frequency variable v.

(1) Consider first the Fourier dual of the
sampling theorem for variation limited
systems. Here, we require that F:ltk(t;v)]
be identically zero outside the interval
It] = T,. Also U(v) must be "bandlimited."
That is, our input, u(t), must be nonzero
only over the interval |t| < T,+ . The re-
sulting sampling theorem, then, is simply
the Fourier dual of Eq. 1ll: 5

1
yit) = = g k(t-cv ;v )U(v )*sinc(2T_t/c)
(34)
where 2'1's = 2'1‘u + zrv and Vo= n/ZTs.

(2) Consider next the Fourier dual of the
sampling theorem in section 4. Here, we
require F;llk(t-cv;v)l is zero for |t| > Th
and, again, that u(t) is zero for |t| > T,-
The Fourier dual of the sampling theorem

in Eq. 13 follows immediately as

y(t) = ,%; E K(t-cv ;v )U(v,) (35)

where ZTd = 2Th + ZTu and Ve nIZTd.

(3) Lastly, we inspect the Fourier dual of
the sampling theorem presented in section 5.
Our constraint in this case is that k(t,v)
is bandlimited in t with bandwidth 2wt.
Note that this constraint is the same as re-
quiring h(t;t) to be bandlimited in t.
The resulting sampling theorem expansion
corresponding to Eq. 16 is
t-tn t-t

I kit _; ] U(—2y*sincaw t

n c [ t
" (36)

Lo L]

y(t) =

where tn = n/zut.

The three sampling theorems presented here
can obviously be placed in discrete form as
was done in section 6. For brevity, these
discrete cases will not be presented but
can be straightforwardly derived utilizing
previous notions.
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9. CONCLUSIONS

We have presented several sampling theorems
applicable to various classes of shift var-
iant systems envolving certain bandlimit-
ing constraints on the system impulse re-
sponse and/or input. The system output,
in certain instances, is bandlimited and
the computational form required to evaluate
the values for its sampling theorem ex-
pansion was shown to result in an infinite
matrix relation. The computational forms
in each of the three cases considered are
identical differing only in sampling rate.
The matrix type relationship was shown to
be able to be evaluated in a generalized 2
transform treatment.

sampling theorem, where sampling is largely

Fourier duals of the

performed in the frequency domain, were al-
so presented. Possible areas of applica-

tion of the sampling theorems include sig-~
nal and image processing as well as shift

variant system synthesis with a number of

shift invariant systems and/or tapped de-

lay lines. Investigation into implementa-

tion of the sampling theorems with coherent
optical processors is also presently under

way (9)..
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Figure 1: Ap implementation of the sampling theorem presented in
section 3. Sample values of the input are fed into a

! bank of shift invariant filters each of which corresponds

E to a sample of the parent shift variant impulse response.
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Figure 2: An implementation of the sampling theorem presented in
section 5. Delayed versions of the input are multiplied
by corresponding sample impulse responses, summed, and
passed through a low pass filter to give the output of the
parent shift variant system. -
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